
Acta Cryst. (1980). A36, 763-769 

Statistical Dynamical Theory of Crystal Diffraction. 
I. General Formulation 

BY N. KATO 

Department of Crystalline Materials Science, Faculty of Engineering, Nagoya University, Nagoya, Japan 

(Received 16 January 1980; accepted 14 March 1980) 

763 

Abstract 

The statistical dynamical theory is reformulated as an 
extension of the previous theory [Kato (1976). Acta 
Cryst. A32, 453-457, 458-466] by taking a more 
general form of the correlation function of the lattice 
phase factor. A 'static' Debye-Waller factor E and 
short-range correlation length r are introduced for 
characterizing crystalline media. The fundamental 
equations consist of a set of differential equations for 
the averaged (coherent) wave fields {(Do),(Dg ) } and a 
set of differential equations for the incoherent part of the 

i i intensity fields I Io,lg }. They are connected through the 
transformation to the incoherent beams from the 
coherent waves. In non-absorbing crystals, energy 
conservation holds for the total intensities {Io ~ + Po, 
I~ + /~}, where Io c = l(Do)l 2 and I~ = t ( D g ) l  2. 
The theory can be applied to the diffraction phenomena 
of the crystalline materials of any degree of perfection. 

I. Introduetion 

In a series of papers (Kato, 1976a,b, 1979, 1980a) 
which will be referred to as I, II, III and IV, 
respectively, a statistical theory of dynamical diffrac- 
tion has been developed, primarily in order to under- 
stand the physical meanings of extinction. I dealt with 
the basic concepts of the present approach. The theory 
was applied to the case in which 'secondary extinction' 
was predominant in II and III. Finally, in IV, the 
integrated intensity was discussed for parallel-sided 
crystals. 

In this paper and the following one, the theory will be 
reformulated with a wider scope of application. 
Firstly, the theory is generalized in such a way that it 
can be applied to the cases in which both 'primary' and 
'secondary' extinctions are appreciable. Secondly, not 
only the extinction problems but also the applications 
to diffraction topography are concerned. In particular, 
the intensity distribution of the section and traverse 
topographs will be worked out in the next paper. When 
either the size of the defects is considerably smaller 
than the spatial resolution or the density of visible 
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defects is very large to such an extent that they are not 
individually distinguishable, a statistical approach is 
inevitable. 

The essence of the generalization is to take the most 
general form of the second-order correlation function of 
the lattice phase factor (cf. equation II.1). As a 
consequence, a simple energy-transfer equation can no 
longer describe the diffraction phenomena. Instead, 
under a certain approximation, a mutually connected 
set of the averaged wave equations and the energy- 
transfer equations must be adopted. The former 
describes the coherent component and the latter the 
incoherent component as well as the mixed compo- 
nents of the intensity fields. They are connected 
through the transformation from the coherent waves to 
the incoherent beams. The diffraction phenomena can 
be described by two parameters, which characterize the 
crystal perfection on the short- or long-range scale 
compared with the extinction distance. 

2. Integro-differentiai equations for (Do) and (Ds)  

(a) Fundamental equations 

In this section, we shall derive the fundamental 
equations for the averaged wave functions (Do) and 
(Dg) from the wave equations of Takagi-Taupin type 
(Kato, 1973). We shall write them in the form 

ODo 
- ix_g qJ(So,Sg)Dg(so,Sg), ( la)  

OSo 

cOD g 
-- iKg ~o*(So,Sg)Oo(so,Sg), (lb) 

~gsg 

where ~ is the lattice phase factor defined by 

~p = exp iG(so,Sg ) (2) 

and the lattice phase G is defined by equation (I.3). The 
variables (So,Sg) are the oblique coordinates along the 
directions of the O and G beams, respectively. In the 
following, we shall often omit the variables or one of 
them in the expressions of D o, Dg and ~p when the 
omission is obvious. The reflection strength K_+g in (1)is 
defined by equation (I.2). 
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764 STATISTICAL DYNAMICAL THEORY OF CRYSTAL DIFFRACTION. I 

The formal solutions of (1) for a narrow incident 
wave can be given in the form of integral equations: 

Do(So,Sg ) = 6(sg) 

$o 
+ ix_  e f (o(s o --  ~, sx)Dg(s  o --  ~, sg) d~; 

o 
$g 

Dg(So,Sg ) = itcg f ¢p*(So, s g -  rl)Do(S o, s g -  ~7) drl. 
0 

(3a) 

(3b) 

The term 6(sg) represents the incident wave of unit 
strength. Since, however, we are interested in the 
positive domain of (So,Sg), we omit the term hence- 
forth. 

Although the appearance of the present formalism is 
rather different from that of the previous theory (I-IV), 
the physical implications of these equations are 
equivalent to the statement in deriving equation (I. 13); 
namely 'the wave fields are composed of zig-zag routes 
starting from the entrance point (0,0) and arriving at 
the observation point (N = So~a, M = sg/a) ' .  This point 
will be used extensively in the diagrams (Figs. 1-3) to 
interpret the correlations of the lattice phase and the 
wave fields. 

Taking the average of (1), we have 

 <Do> 
- - -  iK_e.<q)Dg>, (4a) 

Os o 

- - -  ixg<eP*Do). (4b) 
¢3sg 

Using the notation c3~0 = ¢p - <~0> and (3b), the 
correlation appearing in (4a) is given by 

<¢>( D,> ( O~oOq~*> (Do> 
= <¢><D,> 

Sg 

+ i K g f  <~gqg<q~*) Do(So, S * -  q)> dr/ 
0 
$g 

+ ixg f <&O(So,Sg) o o*(So, 
o 

x D O (So, sg --  17) ) dq.  (5a) 

Here, we shall consider only the intrinsic correlation of 
second order, namely the correlation between c~0 and 
c~0* at the neighbouring kink points of an optical route. 
The correlation between &p(So,Sg) and Do(SoSg - q), 
therefore, can be neglected. Also, by definition, (c~O) 
must be zero. Thus, 

Sg 
(~pDg) = Qo><Dg> + iKg f (c3qg(So,Sg)C3~O*(So, S * - rl)) 

0 

x (Do(So,  Sg--  r/)) dr/. (5b) 

Fig. 1 shows the physical implication of each term in 
this expression. 

Here, for convenience, we shall introduce a few 
notations regarding the correlation between ~0 and ~0". 
The correlation function is defined by 

- f ( z )  
= <~0>Qp*> + (c~q~c3~o*), (6) 

where z is the distance between the neighbouring kink 
points. In short, we shall write 

((p> = E (7) 

< c~(oc%p*) = ( 1 --  E2)g ( z ) ,  ( 8 )  

where g(z )  is called the intrinsic correlation function. 
E is the average of the lattice phase and it 

characterizes long-range perfection. In the case of 
thermally vibrating and otherwise perfect crystals, E is 
nothing but the Debye-Waller factor. In addition, we 
shall define the intrinsic correlation length by 

oo 
r =  f g ( z )  dz .  (9) 

0 

This is a parameter which characterizes short-range 
perfection. 

(D,> + 

<Do> 

1 
(a) ((oD,) 

<Do> 

t 

<¢Dg> = <¢><Dg> + (c%pDg> 

i 

<~o*>< Do> < 3(.o" 3~o> < D~> 

(b) <~*Do> 

Fig. 1. Diagram showing the correlations of the lattice phase factor 
and the wave field. The square and circle indicate the average and 
the intrinsic part of the correlation of the lattice phase factor. The 
intrinsic part appears only as a pair correlation between the 
neighbours, which are enclosed by the elliptic circle. The unfilled 
and filled symbols refer to the lattice phase q~ and its complex 
conjugate, respectively. 
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With the use of (5b), (7) and (8), (4a) can be 
rewritten as 

where 

cO(Do) 
- -  -- iK_gE(Dg)  -- K2(1 -- E 2) 

COs o 
Sg 

x fg(tl)(Do(So, S * -  r/)) dr/, (10a) 
0 

K 2 : Kg K_g. 

Similarly, (4b) can be written as 

CO(D,) 

cOsg 
- -  -- itcg E (Do) -- K2(1 -- E 2) 

(11) 

So 

x f g(~)(Dg(s o -- {, sg)) d~. (10b) 
0 

Equations (10) are the fundamental equations for (Do)  
and ( a g ) .  Sometimes, (Do)  and (Dg)  are called 
coherent waves. 

When the spatial variations of (Do)  and (Dg)  are 
negligible within a range of r, (lOa,b) can be simplified 
in the forms of the differential equations, 

CO(Do) 
- - -  i K _ g E ( D g ) -  K 2 ( 1 -  E2)r(Do),  (12a) 

COs o 

CO(Dg) 
- - - -  i~cgE(Do)-- ~c2(1-- E2)v(D,) .  (12b) 

COs, 

Here it is assumed that the position of interest is 
sufficiently far (more than r by an order of magnitude) 
from the edges of the intensity triangle so that the 
integral limits (So,S,) in (10) are regarded as infinite. 

(b) Energy conservation 

The fundamental equations (10) or (12) do not obey 
the conservation of energy even in non-absorbing 

* For example, in the case of crystals Where x g = xg. 
(12), 

CO CO 
I(Do).l = + ~ I(Dg)[ 2 

COs o cos g 

- - - - 2 R e ( x 2 ) ( 1 - - E 2 ) r ( l ( D o ) l  2 + I(Dg)12),. (13) 

More energy of the coherent waves dissipates with 
decreasing long-range perfection specified by E than 
with increasing short-range perfection specified by r. 
As will be seen in the next section, the energy is 
transferred to the incoherent component of the intensity 
fields. This is the case where relatively large mosaic 
blocks (r large) aggregate with large misorientation (E 
small). The local distortion (for example thermal 
vibration) does not break the coherence of the waves 

provided that the crystal is perfect as a whole [v small, 
E _ ~ I ] .  

0 0 
3. The equations for - -  ( I  o) and - -  ( I  s)  

OSo 8s z 

(a) Fundamental  equations 

By similar procedures to those used in the previous 
section, the spatial variations of ( Io)  and ( lg)  are first 
considered based on the wave equations (1). It is 
obvious that 

a</o> a a 
-- (D* g o  D°> + (D°'~so D*° > C&------~ 

= ix_, (D*(q~Ds)) + c.c., (14) 

where c.c. stands for complex conjugate. As illustrated 
in Fig. 2, it is assumed that the intrinsic part of the 
phase factor c0~0 at a kink point can correlate only with 
that at the nearest kink point along an optical route of 
either Dg or D*. Therefore, the correlation concerned 
here has the form 

sg 

(D*(q~D,)) = (~pXD*oD,) + iKg f (CO~p(s,)CO~o*(s,-- 0)) 
0 

x(D*o (Sg)Do(S,-- 0)) dtl 
So 

+ (#%)* f (&o*(So-¢3co~(So)) 
0 

x ( D ~ ( s  o -- ~Dg(So) ) d~. (15) 

i },~ . . . .  
! I 

1 + 1 + 

' C s i  - 
Ii 

(a) ( D*o({ODg)) 

+ + A 
(b) ( D~(~* Do) ) 

Fig. 2. The diagram showing the correlations of the phase factor 
and two wave fields. The meanings of the squares and circles are 
the same as in Fig. I. The elliptic closing line indicates 
correlation. 
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Using (7) and (8), therefore, one can write 

a<io> 

c~s o 
- -  --  i K _ ~ E ( D * D g )  --  K2(1 -- E 2) 

$g 

x f g(rl)(D*(sg)D o (sg-- rl)> drl 
0 

s O 

+ Ix_,I~(1 - E ~) f g(O 
0 

x ( D * ( s  o --  ODg(So)  > d~ + c.c. (16a) 

Similarly, one obtains 

- -  --  i x ,  E < D ~ D o >  --  x2(1 -- E ~) f g ( 0  
c':gsg o 

x ( O * ( S o ) D , ( s  o --  ~)> d~  

+ I~¢gl2(1 --  E 2) fg(rl)  
0 

× (D*(s~--q)Do(S~)>drl+C.C. (16b) 

If one can neglect the variation of D o and D~ in the 
range of r and use the approximation mentioned below, 
(12) and (16) reduce to 

a < l o >  

Os o 
- -  - i x _ g E ( D * D g )  --  x2(1 - E 2 ) r ( I o >  

+ Ix_gl2(1 -- E2)r<Ig> + c.c. (17a) 

second terms of each of (19) are called 'coherent '  and 
' incoherent '  intensities, respectively. 

In this section, for simplicity, we shall continue the 
formulation mainly with the approximate equations 
(12) and (17). Analogous treatments can be made with 
the fundamental equations (10) and (16). 

From (12), one can construct the equations for F o 
and 15 as follows. 

OIeo 

Os o 

- - i x g E ( D * ) ( D o >  --  x2(1 -- E=)rlCg + c.c. 
~sg 

Subtracting these from (17), we have 

~s o 

c3s g 

- - i t c _ g E ( D * ) ( D g >  --  x2(1 -- E2)rlCo + c.c., (20a) 

(20b) 

-- iK_gE(cgD*ocgDg ) + Ix_gl2(l - E2)rlCg 

-- ~¢Z(l - E2)rlto + I~c_~12(I -- E2)zl~ + c.c., 

(21a) 

= i x g E ( c ~ D * t P D o )  + IKgl2(1--EZ)vI~ 

_ x2 (1  - E Z ) r I ~  + l i ¢ ~ 1 2 ( 1  - EZ)rI~o + c . c .  

(21b) 

The first term on the right of (21a) plus its complex 
conjugate can be written in the form 

c3sg 
_ _  _ i K ~ E < D * D o ) -  s:2(1 -- E2)r<I~) 

+ IxglZ(1 --E2)r(Io> + c.c. (17b) 

For non-absorbing crystals (X 2 =  Ixgl2 = IX g12; K~ 
= X g), (16) and (17) satisfy the conservation of energy 

~ +  - -  - o .  ( 18 )  
Os o ~gs~ 

(b) T h e  c o h e r e n t  a n d  i n c o h e r e n t  p a r t s  o f  the  i n t e n s i t y  
f i e l d s  

As in the case of lattice phase [cf. (6)], the 
second-order correlation of any quantities can be 
divided into two parts; the product of the averages and 
the intrinsic correlation between them. Applying this 
rule to the intensity fields, one can write them as 
follows. 

( Io> = ICo + Iio = ( D * > ( D o >  + (cgD* c3Do>, (19a) 

(Ig> = I~ + I ~ =  ( D * > ( D , >  + (c3Dg* c3Dg), (19b) 

<Do*Dg) = <D*)<Dg> + <t?D* t?Dg). (19c) 

Since the wave fields are inhomogeneous even after a 
statistical average is taken, ICo, I~o, etc. must be regarded 
as position dependent. Traditionally, the first and 

i x _ g E ( O D * O D g >  + c.c. 

Sg 

= _x2  E 2 f (t?D*(sg) c3Do(Sg-- rl)> drl 
0 

So 
+ IK_gl z E z f <OD*(s  o --  ~) ODg(So) ) d~ + c.c. 

0 

= --2 R e ( x  2) E 2 Flio + 21x_gl 2 E 2 FI~. (22a) 

Similarly, the first term and its c.c. of (21b) can be 
written as 

DcgE<c3D* c3Do> + c.c. 

= - - 2  Re (x2)E 2 FP~ + 21xgl 2 E 2 FPo, (22b) 

where F is the correlation length of the wave fields, c~D* 
and c3D o (or OD* and ODs). Here, the correlation 
lengths for O and G waves are intuitively assumed to be 
identical, since they are to be treated equivalently 
within the crystal . 'The exact form of F i s  unknown and 
may depend on the crystal perfection. We shall leave 
the problem for a while and discuss it in {} 5(c). 

The assumption of using (22) is equivalent to taking 
the effective correlation length of the lattice phase in the 
form 

r e = (1 -- E2)r  + E 2 F. (23) 
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4. The procedures for finding the intensity fields 

In this section, we shall summarize the procedures to 
obtain the total intensities with a few supplementary 
arguments. For making the theory complete, the terms 
of the normal absorption are explicitly included in the 
differential equations. The justification of this revision 
is explained in § 2 of I. 

(a) The total intensities 

( Io)  = ICo + Iio, ( I3)  = leg + Itg. (24a,b) 

(b) The coherent part  o f  the intensities 

I ~ =  I(Do)l 2, I g =  I(D3)12. (25a,b) 

The averaged wave fields (Do)  and (D3)  are given 
by the averaged wave equations [el. (12)], 

~(Do) 
- - -  ½rie(Do) + ix_gE(D3) ,  (26a) 

c3s o 

~(O 3) 
- - - -  lr ie(Dg )" + i x3E(Do) ,  (26b) 

cgs 3 

where 

f i e = r i o  + 2 Re(K2)(1 -- E2)v (27) 

is the effective absorption coefficient of the coherent 
wave fields. 

(c) The incoherent part  o f  the intensities 

The intensity fields i (Io,I3) can be obtained by the 
following equations [cf  (21), (22) and (23)]. 

----[_lelio + ~7_glig + a _ g ( 1 -  E2)I~ ( 2 8 a )  
cos o 

~g 
C3S g 

- - = - - ~ U e I i g  + ?r3Ii o + a3(1--  E2)IC o 

+ HIK312(1 - E2)IAI 2 e x p  --fie §o~, (28b) 

where 

~e = rio + 2 Re (X2)Te = fie + 2 Re ( x 2 ) E  2 F (29) 

is the effective absorption coefficient of the incoherent 
intensity fields. The coupling constants are given by 

a3 = 21t¢312 re, a-3 = 21Jc-g12 re, (30a,b) 

rig = 2IK3I 2 Z', 0"_ 3 = 21/¢_g 12 Z'; (30c,d) 

the term [[ ] will be explained in the next section. 

(d) The boundary conditions 

In the case of a narrow incident wave D e = Afi(sg), 
the wave propagating through the crystal without 

Bragg reflection must be 

Do(So,Sg)=A 6(sg)exP--½rioS o (31) 

because the original wave equations include only 
photoelectric absorption. Then, the Bragg-reflected 
wave along the O direction (sg = e; a positive 
infinitesimal) is given by integrating ( lb )wi th  (31), in 
the form 

Dg(So,e ) : iKg ~O(So,e)A exp -½rio So. (32a) 

Therefore, one can obtain 

(Dg(So ,e ) )  = i xgEA exp --½rioSo, (32b) 

Itg(So,e)= Ixg[ 2 IAI2(1 -- E2)exp--rioSo.(32c) 

These conditions, however, cannot be applied directly 
to the problems of solving (26) and (28) because the 
equations are valid only for the region sg > v as 
discussed above. To be exact, one has to know how the 
wave field (D3(So,V)) and the intensity field Ii,(So,r) are 
built up from the purely wave-optical arguments. Since 
the task is not easy, we shall assume that (26) and (28) 
can be extended to s 3 > e. This assumption, however, 
may not be serious because the ambiguity in s 3 is 
merely r in order of magnitude and r is usually smaller 
than a spatially resolvable distance p. If r > p, the 
homogeneity of the medium is no longer valid. Such 
cases are beyond the scope of the present theory. 

In the regions where (26) and (28) can be used, we 
already know that the effective absorption coefficient is 
either rie or fie instead of rio in the respective cases. 
Therefore, we shall modify conditions (32) in the 
following way: 

equations (26) 

( D3(So,e)) = D¢ 3 EA exp -½rie So; (33a) 

equations (28) 

I~(so,e)= Ix312(1 - - E 2 ) l A I 2 e x p - [ t e S o  . (33b) 

We also need the boundary conditions along the line 
s o = e. Again, we shall assume that (26) and (28) can 
be used for s o > e. Since no O wave arrives along the 
line s o = e, it is safe to assume the boundary conditions: 

equations (26) (Do(e,sg)) = 0, (34a) 

equations (28) Ito(e,s3) = 0. (34b) 

So far, we have discussed the case of a narrow 
incident wave. Often, however, we have to treat a wide 
homogeneous beam for a crystal of finite shape. It 
should be noted here that a plane-wave solution of (26) 
cannot be used in (25) because the homogeneous beam 
is not the plane wave. The coherent intensities (Ig,Ieg) 
are given by a spatial integration of the absolute square 
of the solution of (26) for a narrow incident wave over 
the entrance surface of the O beam. 

c c With these intensity fields (lo,13) as the body source, 
the intensity fields i i (Io,I3) are obtained from (28). As 
fully discussed in IV, the incident beam penetrating 
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through the crystal without creating the Bragg-reflected 
beam must be eliminated from Po. Then, the incoherent 
part of the G beam (33b), which is created from the 
incident beam, is an additional body source to the 
intensity I~. For this reason, the term ~ ~ has to be 
added to the right side of (28b). Here, s o is replaced by 
go, which is the distance between the point of interest 
(So,So) in the crystal and the corresponding entrance 
point. In general, go is a function of (SoSg). With this 
viewpoint, the boundary conditions must be 

I~o = 0 on the entrance surface of the O beam, 
(35a) 

I~ -- 0 on the entrance surface of the G beam 
(35b) 

because no incoherent beam arrives on the entrance 
surface. The incoherent beams are created always 
inside the crystal. 

The concrete solution will be given in the following 
paper (Kato, 1980b). 

5. Discussion and conclusions 

(a) The coherent and incoherent components of  the 
intensity fields 

As stated in (19), the ensemble average of the 
intensity can be divided into two components; coherent 
and incoherent. This dividing is exact or a matter of 
definition of 'coherent' and 'incoherent' components. 
The coherent component is the intensity of the 
averaged wave field, (Do) o r  (Dg). Under the 
condition r ,~ A, (Do) and (Dg) obey a set of wave 
equations (12), which are different from the original 
wave equations (1) in two aspects: (i) the averaged 
"structure factor [EKg] is used instead of the original one 
[Kg]; (ii) a term is added for describing the energy 
dissipation from the coherent channel. 

In the case of thermally vibrating crystals, Partha- 
sarathy (1960) proposed a wave equation in which the 
structure factor is replaced by the averaged one. The 
equation is valid only when the Einstein model of 
thermal vibration can be assumed ( r - -  0). In distorted 
crystals, certainly, this simplification cannot be accept- 
able. 

Owing to the dissipation term, the apparent ab- 
sorption coefficient must be corrected not only for the 
effects of thermal vibration but also for the effects of 
invisible small defects which are very likely included in 
most crystals. If the accurate intensity fields inside the 
crystal are of interest (e.g. Wada & Kato, 1976), 
careful considerations are required on the absorption 
coefficient. 

The incoherent component is defined by (cOD* cOD) 
as shown in (19). The deviation of the wave from the 
average, cOD(So,Sg), depends on the 'history' that the 

wave has encountered in the region s" < s o and s'g < sg. 
It is, therefore, a functional of the lattice distortion 
U(So,Sg). The incoherent intensities (cOD* cOD), however, 
can be regarded as a function depending on the position 
and the statistical parameters of the lattice distortion, 
E and r. They obey a set of differential equations (28) 
under the approximations stated in deriving them. 

Energy conservation (18) is valid for the total energy 
in non-absorbing crystals at any stage of approxi- 
mation. The same amount as the energy dissipated 
from the coherent channel is transferred to the 
incoherent channel as a form of body source. 

(b) The relation between the present and the previous 
theory 

The present theory is formulated in the form of 
integro-differential equations [(10) and (16)]. They are 
also approximated in the forms of differential equations 
[(12) and (17)]. The previous approach ( I - I I ) w a s  
more or less algebraic; namely enumerating possible 
routes which have the same amplitude and summing 
the amplitudes multiplied by the number of the routes. 
It is instructive to compare the two approaches. 

The quantities discussed here, in fact, can be written 
down in terms of the notations used in the previous 
papers [el equations (I. 13-16)]. For example, 

(Dg) = ZBR (exp iQ), (36a) 
R 

(cOD* cODg) = E E BRB~' {(exp i (QR-  Qg,))} 
R R '  

-- I(Dg)l 2 • (36b) 

The present theory is concerned with the extended 
cases described by (6) for the second-order correlation. 
When E = 0, (exp iQR) can be omitted if the route R 
includes at least one isolated kink point. Here, all routes 
are taken into account by associating the average 
reflection strength [ix+_g E] with every isolated kink 
point. 

Similarly, all pairs of routes R and R' are taken into 
account in calculating (exp i(QR - QR,)) in the present 
theory. A typical diagram illustrating the correlation of 
the routes R and R' is shown in Fig. 3. If both R and R' 
have no coupling node of isolated kinks such as A, B, 
the intensity is calculated through (Dg). For this 
reason, the intensity I(Dg)l 2 has to be subtracted from 
the right side of (36b). 

In the other extreme case that no isolated kink such 
as a, b, a', b' is included in R and R ', the intensity had 
to be calculated according to the previous approach 
discussed in II and III. If we do so, the correlation 
length r2 (II) or a reduced correlation length R z" 2 (III) 
is expected in the place of r in the present theory. 
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Incidentally, according to the definition (11.2), r is to be 
read as r 1. The present theory using the differential 
equations leaves out the non-local correlation between 
R and R'  so that only r appears in the expressions of 
(tgD~cgDg). It is not difficult to revise this deficiency 
but we shall postpone the problem to the next paper, 
because it is easier to understand the arguments after 
obtaining the concrete solution of the differential 
equations. 

(c) The correlation length of  the incoherent part o f  the 
wave fields; Fin (23) 

It is not easy to work out the expression for F 
directly from its definition [cf. (22)]. However, by 
inspecting each term of the energy-transfer equations 
(21), we can see the physical meanings of the first terms 
of (21a,b); from which we shall derive a reasonable 
expression for F. 

The second terms of (21) are the increment of the 
c c incoherent beam due to the coherent source [Io,Ig]. 

Up to the first node A or B in Fig. 3 each of the routes 
R and R '  is regarded as an optical route describing the 
coherent waves and the conjugate waves respectively. 
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Fig. 3. The typical case of the correlation between the two wavelets 
associated with the routes R and R'. 

If one or both of the routes R and R ' includes the node, 
then the pair of routes will describe the incoherent 
beam. The incoherent beam changes in intensity for 
two reasons. The decrease of the intensity is caused by 
the intrinsic correlation of the kinks forming a kink pair 
P and P '  along R and R' ,  respectively. This process is 
represented by the third terms of (21). Also, the in- 
crease of the intensity is expected due to the intrinsic 
correlation of the kinks forming a coupling node A or 
B. The fourth terms of (21) are responsible for this 
process. 

The rest of the reflection processes illustrated in Fig. 
3 is the one due to the isolated kinks a, b, a '  and b' 
associated with EK+v This implies that the reflection 
processes concerned must be the energy transfer in a 
hypothetical perfect crystal with reflection strength 
EK+_g in amplitude. 

In perfect crystals, although the correlation length of 
the lattice phase is large, the intensity of the 0 and G 
beams dies out effectively at a distance greater than 
(Eltcl) -x. Therefore, one can assume the correlation 
length F as 

F =  A/E,  (37) 

where A is the extinction distance (Ixl-l) .  The 
numerical factor of unity in the order of magnitude is 
unknown but the functional form must be correct. For 
obtaining the concrete solution of the intensity field, we 
shall use (37) in the following paper. 
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